
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 651
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

An Effective Technique of Detecting & Preventing
Web Vulnerabilities

Swarnaprabha Patil, Nitin Agrawal

Abstract— Here in this paper a new and efficient technique for the detection and prevention of security in web is implemented here. Since
Web contains a number of sql injection attacks through which information can be fetched. Hence a new technique is implemented which
provides successful attacks detection and prevention using IDS. The experimental results show the performance of the proposed
methodology.

Index Terms— Web Security, Vulnerability, Attack Injection, SQL Injection, False Positive, True Positive.

—————————— ——————————

1 INTRODUCTION
he web is our primary gateway to many critical services
and offers a powerful platform for emerging applications.
As the underlying execution platform for web applica-

tions grows in importance, its security has become a major
concern. Web application vulnerabilities have become perva-
sive in web applications today, yet techniques for finding and
defending against them are limited. With such a e-commerce
transactions occurring, the security of those web transactions
is a major concern to any Internet user. To complicate matters,
the introduction of smart mobile devices and tablet computers
is also having an impact on e-commerce and web transactions.
In recent years there has been extensive research conducted
related to e-commerce and web security; however, the prob-
lem of securing web transactions still exists. The problems
with e-commerce and web security are often related to Struc-
tured Query Language (SQL) injection, cross-site scripting
(XSS), cookie manipulation, and Uniform Resource Locator
(URL) redirection [1, 4]. We tackle the problem of developing
techniques to automatically find and prevent script injection
or scripting vulnerabilities-a class of web vulnerabilities per-
missive in web applications today. Web applications are a
fundamental part of our lives and culture. We use web appli-
cations in almost every facet of society: socializing, banking,
health care, taxes, education, news, and entertainment, to
name a few. These web applications are always available from
anywhere with an Internet connection, and they enable us to
communicate and collaborate at a speed that was unthinkable
just a few decades ago by web languages.
Web languages, such as HTML, have evolved from light-
weight mechanisms for static data markup to full-blown vehi-
cles for supporting dynamic execution of web application log-
ic. HTML allows inline constructs both to embed entrusted
data and to invoke code in higher-order languages such as
JavaScript. Web applications often embed data controlled by
entrusted adversary’s inline within the HTML code of the web
application. For example, a blogging application often embeds
entrusted user comments inline within the HTML content of
the blog. HTML and other web languages lack principled
mechanisms to separate trusted code from inline data and to
further isolate entrusted data such as user-generated content
from trusted application data. Script injection vulnerabilities
arise when entrusted data controlled by an adversary is inter-
preted by the web browser as trusted application i.e. script

code. This causes an attacker to gain higher privileges than
intended by the web application, typically granting entrusted
data the same authority as the web application's code. Well-
known example categories of such attacks are cross-site script-
ing i.e. XSS [5] and cross-channel scripting i.e. or XCS [2] at-
tacks. Scripting vulnerabilities are highly pervasive and have
been recognized as a prominent category of computer security
vulnerabilities. Software errors that result in script injection
attacks are presently rated as the fourth most serious of soft-
ware errors in the CWE's Top 25 list for the year 2011 [3].
OWASP's Top 10 vulnerabilities ranks scripting attacks as the
second most dangerous of web vulnerabilities in 2010 [4] Web
Application Security Consortium's XSS vulnerability report
shows that over 30% of the web sites analyzed in 2007 were
vulnerable to XSS attacks [6]. In addition, there exist so many
publicly available repositories of real-world XSS vulnerabili-
ties.

Figure 1. Example of a SQL Injection Attack

Server-side Script Injection Vulnerabilities
Script injection attacks in server-side applications have been
investigated in depth by prior work. We provide an example of a
typical scripting attack for exposition. All the HTTP data inputs to

T

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 652
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

the web application server are treated as entrusted data. In this
application, the security policy forbids entrusted data to be
executed as scripts or HTML markup when processed by the web
browser. Script injection vulnerability is one that allows injection
of entrusted data into a victim web page which is subsequently
interpreted in a malicious way by the browser on behalf of the
victim web site.

Client-side Script Injection Vulnerabilities
Much prior vulnerability research has focused primarily on
the server-side components of web applications. Scripting
vulnerabilities can arise in client-side components, such as
those written in JavaScript, as well [7]. Here we present exam-
ples of client-side script injection vulnerabilities, a subclass of
scripting vulnerabilities which result from bugs in the client-
side code. In client-side script injection vulnerability, critical
sinks are operations in the client-side code where data is used
with special privilege, such as in a code evaluation construct.

SQL Injection
SQL injection vulnerabilities, while declining in the number
reported compared to XSS vulnerabilities are still numerous
and are incredibly critical when they occur.

$name = $_GET['name'];
$q = "select * from users where name = '" . $name . "';";

$result = mysql_query($q);

2 LITERATURE SURVEY
The approach of Louw et al. [8] is the closest to our work. They
develop the “Blueprint” tool to mitigate XSS attacks that first
generates response pages without any JavaScript node at the
server-side. To eradicated script is accomplished at the browser
side based on the content generation provided by the server-
side with code instrumentation. Consequently, Blueprint has to
rely on a particularly intended external JavaScript library at the
client-side. Absolutely not, but their approach depends on
compassionate HTML and JavaScript features and removes
suspected malicious contents from the server-side.
Furthermore their come within reach of does not impose any
external library dependency. Blueprint transforms untrusted
contents (e.g., an attacker supplied inputs) when sending them
to the browser. On the contrary, their approach transforms the
server-side script code based on the possible injection places,
but not the injected contents themselves.
In this paper author et al. Jose Fonseca [9] proposes a
methodology to automatically inject realistic attacks in web
applications and a prototype tool to evaluate web application
security mechanisms. The proposed work analyzing the web
application and generating a set of potential vulnerabilities on
the idea that injecting realistic vulnerabilities in a web
application and attacking them automatically can be used to
support the assessment of existing security mechanisms and
tools to find each vulnerability in custom setup scenarios is

injected and various attacks are mounted over each one is
automatically assessed and reported.
In this paper author has proposed [10] mechanism for as-
sessing Web application security was constructed to analyze
the design of Web application security assessment mecha-
nisms in order to identify poor coding practices that render
Web applications vulnerable to attacks such as SQL injection
and cross-site scripting. Proposed technique come across on
the real-world circumstances of web application security esti-
mation of intended a crawler crossing point that incorporates
and mimics Web browser functions with the intention of anal-
ysis Web applications.
Here et al. Halfond, W. G [11] present an extensive perform
this evaluation, they first identified the various types of
SQLIAs known to date. They then evaluated the considered
techniques in terms of their capability to detect and/or prevent
such type of attacks. For each type of attack, they make availa-
ble explanations and examples of how attacks of that type
could be performed.
Here author et al. Manisha A. Bhagat [12] paper proposed
alerts the people who are related to database maintenance,
DBA and other people who are introducing their sites on
Internet. This paper gives idea on the subject of the hole which
can be secured either by code or protection security like
firewalls. It is essential to check the code before commencing
the site. SQL Injection Attacks are dangerous to the
applications on Internet.
In this paper [13] author has presented an enhanced Tainted
Mode model that incorporates data flows which allows inter
module vulnerabilities detection. They also commenced a new
approach to involuntary penetration testing by leveraging it
with knowledge from dynamic analysis. Convectional
approaches based on the Tainted Mode vulnerability model
which cannot hold inter-module vulnerabilities. So the author
will work focus on two main approaches.
In this paper [14] authors presents an authentication scheme
for preventing SQL Injection attack using Advance Encryption
Standard (PSQLIA-AES). Here this scheme required encrypted
user name and password are to improve the authentication
process with minimum overhead. The server has to sustain
three parameters of every user: user name, password, and
user’s secret key.
In this paper [15] author presents a new methodology by
developing a framework that makes attacks on networked
servers and discovers security vulnerabilities in software
systems and allows security administrators to determine the
problems. To show this model application is built that a new
methodology that takes protocol requirement aspects from
server and carry out various attacks on the server and
discovers vulnerabilities.
In this paper [16], they present a detailed review on various
types of Structured Query Language Injection attacks, Cross
Site Scripting Attack, vulnerabilities, and prevention methods.
From the survey of various papers it is found that SQL

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 653
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Injection and Cross-site Scripting (XSS) Attacks are most
powerful and easiest attack methods on the Web Application.
This research presents a review of various current methods for
protecting against SQL injection and XSS make use of it.
Fonseca, J. CISUC [17] proposed a methodology to inject
realistic attacks in Web applications. The methodology is
based on the idea that by injecting realistic vulnerabilities in a
Web application and attacking them automatically we can
assess existing security mechanisms. To provide true to life
results, this methodology relies on field studies of a large
number of vulnerabilities in Web applications. The paper also
describes a set of tools implementing the proposed
methodology. They allow the automation of the entire process,
including gathering results and analysis.

3 PROPOSED METHODOLOGY
A novel method to detect SQL injection attacks based on static
and dynamic analysis. This method removes the attribute val-
ues of SQL queries at runtime (dynamic method) and com-
pares them with the SQL queries analyzed in advance (static
method). Applying Table 1 to the example in the following:

If : admin, 1234, 1’ OR ‘1=1’-- and 1234.
FQ : SELECT * FROM user WHERE id=’$id’ AND pass-

word=’$password’.
DQt : SELECT * FROM user WHERE id=’admin’ AND

password=’1234’,
DQf : SELECT * FROM user WHERE id=’1’ or ‘1=1’—‘ AND
password=’1111’.

Symbol Description

It,f User input data{t:normal input data, f

:abnormal input data}

F Function which drops the value of the SQL

query

FQ Fixed SQL query in web application

DQt,f Generated dynamic SQL query with user in-

put {t:normalSQLquery,f :abnormal SQL que-

ry}

FDQ Attribute indicating which value was re-

moved from the fixed SQL query

DDQt,f Attribute indicating which value was re-

moved from the dynamic SQL que-

ry{t:normalSQLQuery,f :abnormal SQL Que-

ry}

The detection method proposed in this article uses the func-
tion f which deletes the attribute values in the SQL queries.

The function is shown in formula
FDQ=f (FQ), DDQ=f (DQ)…………………………….(1)
In algorithm 1, the function, f , removes only the string values
surrounded by ‘ after ‘‘‘=’’ or within parenthesis. The attribute
value of an SQL query consists either of the form variable =
‘string value’ or variable = numeric value. In case that a func-
tion is used in an SQL query, the function head is either of the
form ‘‘function name (numeric value)’’ or ‘‘function name
(‘string value’)’’. The value of the string is surrounded by ‘.
The ‘which surrounds the string value is the operator’ but the
value of ‘ in the SQL query is preceded by \. So the case where
‘ is preceded by \ is not considered. The function of
Get_Token in the algorithm extracts and removes the first
character in the input string and then returns the character.
Current_Quotation_State is changed to the appropriate status
in the function Toggle Current_Quotation_Statein this algo-
rithm.
Algorithm f(One SQL query)
Enumerate Quotation_Status = { Quot_Start, Quot_End}
Input String=One SQL query;
;Output_String=Null;
Current_Quotation_State=Quot_End;
Do while(not empty of Input String)
{
Char=Get_Token(Input_String);
If Char is a quotation character
{
Add Char to Output_String;
If the preceding character is not back slash
Toggle Current_Quotation_State;
}
Else
{
If Current_Status is Quota_End than
{
Add Char to Output_String;
}
Else
{
If the preceding character is \ (back slash) then
Add Char to Output_String;
}
}
}
Return Output_String;

Algorithm 1: Algorithm which removes the attribute value in
a SQL query.
The following examples show the result of function f . Bold
characters are deleted and ‘‘consists of two concatenated ‘.
DQ1 is a normal query and DQ2 is an abnormal query.
FQ = SELECT * FROM user WHERE id=’$id’ AND pass-
word=’$password’
FDQ=f(DQ)= f(SELECT * FROM user WHERE id=’ $id’ AND
password=’$password’) = SELECT * FROM user WHERE id=’
’ AND password=’ ’
DQ1= SELECT * FROM user WHERE id=’admin’ AND \
password=’1234’
DDQ1=f(DQ1) = f(SELECT * FROM user WHERE id=’admin’

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 654
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

AND password=’1234’)= SELECT * FROM user WHERE id=’ ’
AND password=’ ’DQ2= SELECT * FROM user WHERE id=’1’
or ‘1=1’—‘ AND password=’1234’
DDQ2=f(DQ2) = f(SELECT * FROM user WHERE id=’1 ’ or‘
1=1’—‘ AND password=’1234’)= SELECT * FROM user
WHERE id=’ ’ or ‘ ‘—‘’1234’
Algorithm 2 is the generalization of the SQL injection attack
detection algorithms proposed in this section. Lines 1–4 of this
algorithm can be processed for the targeted web pages in ad-
vance.

N: Total number of fixed SQL queries in web application
FQi: i ’th fixed SQL query in web application
DQi: Dynamic SQL query generated from FQi
f : Function to delete value of attribute in SQL query
FQ = {FQ1, . . . , FQn},
FDQ = {FDQ1, . . . , FDQn},
// Static analysis
1. For i=1 to N
2. Get FQi
3. FDQi = f (FQi)
4. End {For}
5.// Dynamic analysis (running time)
6. While(Normal & k & N)
7. Get DQk from the web with I{t,f }
8. DDQk = f (DQk)
9. If(FDQk & DDQk) = 0 then
10. Result = Normal
11. Else
12. Result = Abnormal
13. End {If}
14. End {While}

4 RESULT ANALYSIS

Figure 5.1 Comparison of Detection of Successful Vulnerabili-
ties

Figure 5.2 Comparison of Attacks Detection

Figure 5.3 Comparisons of False Positives

4 CONCLUSION
Attacks to these vulnerabilities basically take advantage of
improper coded applications due to unchecked input fields at
user interface. This allows the attacker to change the SQL
commands that are sent to the database (SQLi) or through the
input of HTML and scripting languages (XSS). The use of fault
injection techniques to assess security is actually a particular
case of software fault injection, focused on software faults that
represent security vulnerabilities or may cause the system to
fail in avoiding a security attack. We are trying to automatical-
ly discover places in the web application code that can be used
to inject vulnerabilities using fault injection techniques and
smart fuzzing to seamlessly attack them. The proposed meth-
odology implemented here for the security vulnerabilities
from various attacks is efficient as compared to the existing
technique.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 655
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

REFERENCES
[1] W. D. Thomas Ian and D.Weidenhamer, “Quarterly Retail E-

Commerce Sales 1st Quarter 2012,” U.S. Census Bureau, Washington,
DC, USA, Newsletter CB12-78, May 2012.

[2] Hristo Bojinov, Elie Bursztein, and Dan Boneh. “XCS: Cross Channel
Scripting and its Impact on Web Applications" In: CCS. 2009.

[3] CWE. “2011 CWE/SANS Top 25 Most Dangerous Software Errors".
http://cwe.mitre.org/top25/. 2011.

[4] OWASP. OWASP Top 10 - 2010, The Ten Most Critical Web
Application Security Risks.Presentation
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Proje
ct.

[5] RSnake. XSS Cheat Sheet for filter evasion.
http://ha.ckers.org/xss.html.

[6] Web Application Security Consortium. “Web Application Security
Statistics Project 2007".
http://www.webappsec.org/projects/statistics/wasc_wass_2007.pdf.

[7] Amit Klein. DOM Based Cross Site Scripting or XSS of the Third
Kind. Tech. rep.Web Application Security Consortium, 2005

[8] M. Louw and V. Venkatakrishnan, “BLUEPRINT: Robust Prevention
of Cross-Site Scripting Attacks of Existing Browsers,” IEEE Security
and Privacy, Oakland, California, USA, May 2009, pp. 331-346.

[9] José Fonseca, Marco Vieira, and Henrique Madeira “Evaluation of
Web Security Mechanisms using Vulnerability & Attack Injection”,
pp. 1- 12, 2013.

[10] Huang, Yao-Wen, Shih-Kun Huang, Tsung-Po Lin, and Chung-Hung
Tsai. "Web application security assessment by fault injection and
behavior monitoring." In Proceedings of the 12th international
conference on World Wide Web, pp. 148-159. ACM, 2003.

[11] Halfond, W. G., Jeremy Viegas, and Alessandro Orso "A classification
of SQL-injection attacks and countermeasures", In Proceedings of the
IEEE International Symposium on Secure Software Engineering,
Arlington, VA, USA, pp. 13-15. 2006.

[12] Manisha A. Bhagat and Vanita Mane “Protection Of Web Application
Against Sql Injection Attack”, International Journal of Scientific and
Research Publications, ISSN 2250-3153, Volume 3, Issue 10, October
2013.

[13] Petukhov, Andrey, and Dmitry Kozlov "Detecting security
vulnerabilities in web applications using dynamic analysis with
penetration testing." Computing Systems Lab, Department of
Computer Science, Moscow State University (2008).

[14] Indrani Balasundaram and E. Ramaraj “An Authentication
Mechanism to prevent SQL Injection Attacks”, International Journal
of Computer Applications, ISSN: 0975 – 8887, Volume 19, No. 1, April
2011.

[15] Dr. B. Raveendranath Singh “Vulnerability Discovery with Attack
Injection Software Vulnerability Discovery”, International Journal of
Advanced Research in Computer Science and Software Engineering,
ISSN: 2277 128X, Volume 3, Issue 9, September 2013.

[16] Rahul Johari and Pankaj Sharma “A Survey On Web Application
Vulnerabilities (SQLIA,XSS)Exploitation and Security Engine for SQL
Injection”, 2012 International Conference on Communication
Systems and Network Technologies, pp. 453 – 458, 2012.

[1] Fonseca, J. CISUC, Univ. of Coimbra, Coimbra, Portugal Vieira, M.
and Madeira, H. Vulnerability & attack injection for web applica-
tions. Dependable Systems & Networks, 2009 DSN '09. IEEE/IFIP In-
ternational Conference on, 93-102, 2009.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Literature Survey
	3 Proposed Methodology
	4 Result Analysis
	4 Conclusion
	References

